如图,△ABC中,AC的垂直平分线DE交AC于E,交∠ABC的平分线于D,DF⊥BC于F.

1个回答

  • (1)①:作DH⊥BA交BA延长线于H,连接DC,

    则DB平分∠ABC,∴DF=DG,又DE垂直平分AC,∴DC=DA

    ∴直角△DFC≌直角△DHA,∴HA=FC,又由△DBF≌△DBH

    知BF=BH,∴BC-BA=BF+CF-(BH-HA)=BF-BH+2CF=2CF

    ②:同样得BC+BA=BF+CF+BA=BF+AH+BA=BF+BH=2BF

    (2):∵∠ABC=60°,∴∠DBH=∠DBF=30°,

    ∴∠BDH=∠BDF=60°,∴∠HDF=120°,又∠HDA=∠FDC

    ∴∠ADC=∠ADF+∠FDC=∠ADF+∠HDA=∠HDF=120°

    又DA=DC,∴∠DAE=∠DCE=30°,∴∠ADE=60°

    (3):类似(2)可知,∠ADC=∠HDF=π-α,∴∠DAE=[π-(π-α)]/2=α/2