(1)①:作DH⊥BA交BA延长线于H,连接DC,
则DB平分∠ABC,∴DF=DG,又DE垂直平分AC,∴DC=DA
∴直角△DFC≌直角△DHA,∴HA=FC,又由△DBF≌△DBH
知BF=BH,∴BC-BA=BF+CF-(BH-HA)=BF-BH+2CF=2CF
②:同样得BC+BA=BF+CF+BA=BF+AH+BA=BF+BH=2BF
(2):∵∠ABC=60°,∴∠DBH=∠DBF=30°,
∴∠BDH=∠BDF=60°,∴∠HDF=120°,又∠HDA=∠FDC
∴∠ADC=∠ADF+∠FDC=∠ADF+∠HDA=∠HDF=120°
又DA=DC,∴∠DAE=∠DCE=30°,∴∠ADE=60°
(3):类似(2)可知,∠ADC=∠HDF=π-α,∴∠DAE=[π-(π-α)]/2=α/2