∫arctanx/x^2dx=-∫arctanxd(1/x)=-arctanx/x+∫1/[x(1+x^2)]dx=-arctanx/x+∫[1/x-x/(1+x^2)]dx=-arctanx/x+ln[|x|/√(1+x^2)]+C
∫x/√(x-3)dx=2∫xd√(x-3)=2x√(x-3)dx-2∫√(x-3)dx=2x√(x-3)-2×2/3×√(x-3)^(3/2)+C=2/3×(x+6)√(x-3)+C
∫arctanx/x^2dx=-∫arctanxd(1/x)=-arctanx/x+∫1/[x(1+x^2)]dx=-arctanx/x+∫[1/x-x/(1+x^2)]dx=-arctanx/x+ln[|x|/√(1+x^2)]+C
∫x/√(x-3)dx=2∫xd√(x-3)=2x√(x-3)dx-2∫√(x-3)dx=2x√(x-3)-2×2/3×√(x-3)^(3/2)+C=2/3×(x+6)√(x-3)+C