(Ⅰ)在正项等差数列{an}中,
对任意的n∈N*都有a1+a2+…+an=
1
2anan+1,
令n=1,得a1=
1
2a1a2,
∵a1>0,
∴a2=2.
令n=2,得a1+a2=
1
2a2a3,
即a1+2=a3=a1+2d,
故d=1.
∴an=2+(n-2)×1=n.
(Ⅱ)证明:∵an=n,bn=2an=2n,
∴Sn=2+22+…+2n
=
2(1−2n)
1−2
=2n+1-2.
故Sn-bn+1=(2n+1-2)-2n+1=-2,
∴对任意的n∈N*,Sn-bn+1均为定值-2.