高等代数,多项式在有理数域可约,求a的所有整数解

1个回答

  • 首先,由Gauss引理,整系数多项式在有理数域上可约,

    当且仅当其可分解为两个次数不小于1的整系数多项式的乘积.

    即有f(x) = g(x)h(x),其中g,h均为次数不小于1的整系数多项式.

    比较两端首项系数知,g,h的首项系数只能同为1或-1.

    比较两端常数项知,g,h的常数项恰有一个被p整除.

    不妨设g,h的首项系数同为1,且g的常数项被p整除,h的常数项不被p整除.

    若h的次数不小于2,则g的次数不大于n-2.

    注意到g的首项系数是1,不被p整除,常数项被p整除.

    设g的k次项系数不被p整除,且低于k次项的系数都被p整除,有1 ≤ k ≤ n-2.

    由h的常数项不被p整除,可知g(x)h(x)的k次项系数不被p整除,这与f(x)的k次项系数为0矛盾.

    因此h的次数只能是1,可设h(x) = x-b,其中b是不被p整除的整数.

    对q重复上述讨论,可知g,h中常数项不被q整除的必为1次多项式,

    而g的次数 ≥ n-1 ≥ 2,故只能是h的常数项不被q整除,即b也不被q整除.

    又由f(x) = g(x)h(x),有b | pq,只有b = ±1.

    代入f(b) = g(b)h(b) = 0可解得a = -1-pq或1+(-1)^(n-1)·pq.

    这就是使f(x)在有理数域上可约的整数a的全体取值.