解题思路:(1)此题只需由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判断两三角形全等得出∠ADB=∠AFC;
(2)此题应先判断得出正确的等量关系,然后再根据△ABD≌△ACF即可证明;
(3)此题只需补全图形后由图形即可得出∠AFC、∠ACB、∠DAC之间存在的等量关系.
(1)①证明:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAF=60°,
∴∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,∴AD=AF,
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF,
∴∠ADB=∠AFC,
②结论:∠AFC=∠ACB+∠DAC成立.
(2)结论∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB-∠DAC.
证明:∵△ABC为等边三角形,
∴AB=AC,
∠BAC=60°,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,
∴AD=AF.
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF.
∴∠ADB=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC.
(3)补全图形如下图:
∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC
(或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质;菱形的性质.
考点点评: 本题考查了全等三角形的判定与性质,综合性较强,同学们应好好掌握.