1+2+3+……+n=n(n+1)/2
1/(1+2+3+……+n)=2/[n(n+1)]=2[1/n -1/(n+1)]
故1/(1+2) +1/(1+2+3)+……+1/(1+2+……99)
=2[1/2-1/3+1/3-1/4+……+1/99-1/100]
=2(1/2 -1/100)
=2(49/100)
=49/50
1+2+3+……+n=n(n+1)/2
1/(1+2+3+……+n)=2/[n(n+1)]=2[1/n -1/(n+1)]
故1/(1+2) +1/(1+2+3)+……+1/(1+2+……99)
=2[1/2-1/3+1/3-1/4+……+1/99-1/100]
=2(1/2 -1/100)
=2(49/100)
=49/50