分部积分法:∫udv = uv - ∫vdu + c
原公式:(uv)'=u'v+uv' 求导公式 :d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为 :d(uv) = vdu + udv 移项后,成为:udv = d(uv) -vdu 两边积分得到:∫udv = uv - ∫vdu + c
分部积分法:∫udv = uv - ∫vdu + c
原公式:(uv)'=u'v+uv' 求导公式 :d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为 :d(uv) = vdu + udv 移项后,成为:udv = d(uv) -vdu 两边积分得到:∫udv = uv - ∫vdu + c