1)y'=e^(x - 1) y''=e^(x - 1)
2)y'=(x/(x^2 + 1)^(1/2) + 1)/(x + (x^2 + 1)^(1/2))
y''=(1/(x^2 + 1)^(1/2) - x^2/(x^2 + 1)^(3/2))/(x + (x^2 + 1)^(1/2)) - (x/(x^2 + 1)^(1/2) + 1)^2/(x + (x^2 + 1)^(1/2))^2
1)y'=e^(x - 1) y''=e^(x - 1)
2)y'=(x/(x^2 + 1)^(1/2) + 1)/(x + (x^2 + 1)^(1/2))
y''=(1/(x^2 + 1)^(1/2) - x^2/(x^2 + 1)^(3/2))/(x + (x^2 + 1)^(1/2)) - (x/(x^2 + 1)^(1/2) + 1)^2/(x + (x^2 + 1)^(1/2))^2