解题思路:由cosθ的值及θ的范围,利用同角三角函数间的基本关系求出sinθ的值,即可确定出tanθ的值.
∵cosθ=-[3/5],θ∈([π/2],π),
∴sinθ=
1−cos2θ=[4/5],
则tanθ=[sinθ/cosθ]=-[4/3].
故选:C.
点评:
本题考点: 同角三角函数基本关系的运用.
考点点评: 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
解题思路:由cosθ的值及θ的范围,利用同角三角函数间的基本关系求出sinθ的值,即可确定出tanθ的值.
∵cosθ=-[3/5],θ∈([π/2],π),
∴sinθ=
1−cos2θ=[4/5],
则tanθ=[sinθ/cosθ]=-[4/3].
故选:C.
点评:
本题考点: 同角三角函数基本关系的运用.
考点点评: 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.