解题思路:根据题意可得,阴影部分的面积是正方形的面积的[1/4],已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.
由题意可得阴影部分面积等于正方形面积的[1/4],即是[1/4],
5个这样的正方形重叠部分(阴影部分)的面积和为[1/4]×4,
n个这样的正方形重叠部分(阴影部分)的面积和为[1/4]×(n-1)=[n−1/4]cm2.
故答案为:[n−1/4].
点评:
本题考点: 正方形的性质.
考点点评: 考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.