下面写得都是以10为底的自然对数
由平均值不等式知
lg(n-1)lg(n+1)<{[lg(n-1)+lg(n+1)]/2}^2
<{[lgn^2]/2}^2=lgnlgn
所以[lg(n-1)/lgn][lg(n+1)/lgn]<1
即logn(n-1)logn(n+1)<1
下面写得都是以10为底的自然对数
由平均值不等式知
lg(n-1)lg(n+1)<{[lg(n-1)+lg(n+1)]/2}^2
<{[lgn^2]/2}^2=lgnlgn
所以[lg(n-1)/lgn][lg(n+1)/lgn]<1
即logn(n-1)logn(n+1)<1