解题思路:首先根据中线的定义求得BD,再根据勾股定理的逆定理证明∠ADB=90°,根据中垂线的性质即可求线段AC的长.
∵AD是BC边上的中线,BC=14,
∴BD=CD=7,
∵AB=25,AD=24,
∴AB2=AD2+BD2(2分)
∴∠ADB=90°,即AD⊥BC(4分)
∴AD是BC的中垂线(5分)
∴AB=AC=25(6分)
点评:
本题考点: 勾股定理的逆定理.
考点点评: 本题考查勾股定理的逆定理的应用,同时考查了中线和中垂线的性质.
解题思路:首先根据中线的定义求得BD,再根据勾股定理的逆定理证明∠ADB=90°,根据中垂线的性质即可求线段AC的长.
∵AD是BC边上的中线,BC=14,
∴BD=CD=7,
∵AB=25,AD=24,
∴AB2=AD2+BD2(2分)
∴∠ADB=90°,即AD⊥BC(4分)
∴AD是BC的中垂线(5分)
∴AB=AC=25(6分)
点评:
本题考点: 勾股定理的逆定理.
考点点评: 本题考查勾股定理的逆定理的应用,同时考查了中线和中垂线的性质.