y'=1/[x+√(x²+a²)]*[x+√(x²+a²)]
=1/[x+√(x²+a²)]*[1+1/2√(x²+a²)*(x²+a²)']
=1/[x+√(x²+a²)]*[1+2x/2[x+√(x²+a²)]
=1/[x+√(x²+a²)]*[x+√(x²+a²)]/√(x²+a²)
=1/√(x²+a²)
y'=1/[x+√(x²+a²)]*[x+√(x²+a²)]
=1/[x+√(x²+a²)]*[1+1/2√(x²+a²)*(x²+a²)']
=1/[x+√(x²+a²)]*[1+2x/2[x+√(x²+a²)]
=1/[x+√(x²+a²)]*[x+√(x²+a²)]/√(x²+a²)
=1/√(x²+a²)