y = [(sinx)^4 + (cosx)^4 + (sinx)^2(cosx)^2]/2 - sin(2x)
= [(sinx)^4 + (cosx)^4 + 2(sinx)^2(cosx)^2 - (sinx)^2(cosx)^2]/2 - sin(2x)
= [1 - (sinx)^2(cosx)^2]/2 - sin(2x)
= 1/2 - [sin(2x)]^2/8 - sin(2x)
= {4 - 8sin(2x) - [sin(2x)]^2}/8
= {20 - 16 - 8sin(2x) - [sin(2x)]^2}/8
= {20 - [4 + sin(2x)]^2}/8
-5/8 = {20 - [4 + 1]^2}/8