f(x)+g(x)=1/(x-1) ①
则f(-x)+g(-x)=1/(-x-1) ②
f(x)是奇函数,g(x)是偶数,则:f(-x)=-f(x),g(-x)=g(x)
所以②式化为:-f(x)+g(x)=-1/(x+1) ③
①-③得:2f(x)=1/(x-1)+1/(x+1)
2f(x)=2x/(x²-1)
所以:f(x)=x/(x²-1)
f(x)+g(x)=1/(x-1) ①
则f(-x)+g(-x)=1/(-x-1) ②
f(x)是奇函数,g(x)是偶数,则:f(-x)=-f(x),g(-x)=g(x)
所以②式化为:-f(x)+g(x)=-1/(x+1) ③
①-③得:2f(x)=1/(x-1)+1/(x+1)
2f(x)=2x/(x²-1)
所以:f(x)=x/(x²-1)