(Ⅰ)依题意得:f′(x)=a(sinx+xcosx),∵x∈(0,[π/2]),∴sinx+xcosx>0,
故当a>0时,f′(x)>0恒成立,即f(x)在(0,[π/2])单调递增,
f(x)max=f([π/2])=[aπ/2]-[3/2]=[π-3/2],求得a=1,可得f(x)=xsinx-[3/2].
(Ⅱ)由(1)可知f(x)=xsinx-[3/2],f(0)=-[3/2],f([π/2])=[π-2/2]>0,
且y=f(x)在区间(0,[π/2])上单调递增,故y=f(x)在(0,[π/2])上有且只有一个零点.
当x∈[[π/2],π]时,设g(x)=f′(x)=sinx+xcosx,则g′(x)=2cosx-xsinx,
显然当x∈[[π/2],π]时,g′(x)<0恒成立,故g(x)=f′(x)在[[π/2],π]上是减函数.
又∵g([π/2])=1>1,g(π)=-π<0,∴必有∈m([π/2],π),使g(m)=0.
得到①当x∈([π/2],m)时,g(x)>g(m)=0,
此时f′(x)>0,f(x)单调递增,f(x)≥f([π/2])=[π-3/2]>0,f(x)在区间([π/2],m)内无零点.
②同理x∈(m,π)时,g(x)<g(m)=0,
此时f′(x)<0,f(x)单调递减,f(m)>0,f(π)=-π-[3/2]<0,
f(x)在区间(m,π)内有且只有一个零点.
综上所述,f(x)在区间(0,π)内有两个零点.