解
∵x1,x2是方程的根
∴由韦达定理得:
x1+x2=3
x1x2=-1
∴2x1+2x2
=2(x1+x2)
=2×3
=6
1/x1+1/x2
=(x2+x1)/(x1x2)
=3/(-1)
=-3
/x1-x2/
=√(x1-x2)²=√(x1+x2)²-4x1x2
=√3²-4×(-1)
=√9+4
=√13
x1²+x2²
=(x1+x2)²-2x1x2
=3²-2×(-1)
=9+2
=11
解
∵x1,x2是方程的根
∴由韦达定理得:
x1+x2=3
x1x2=-1
∴2x1+2x2
=2(x1+x2)
=2×3
=6
1/x1+1/x2
=(x2+x1)/(x1x2)
=3/(-1)
=-3
/x1-x2/
=√(x1-x2)²=√(x1+x2)²-4x1x2
=√3²-4×(-1)
=√9+4
=√13
x1²+x2²
=(x1+x2)²-2x1x2
=3²-2×(-1)
=9+2
=11