已知:如图,三角形ABC中,外角∠DBC与∠ECB的角平分线相交于点O,(1)∠A为64°,求∠BOC的度数

1个回答

  • ∵∠A+∠ABC+∠ACB=180

    ∴∠ABC+∠ACB=180-∠A

    ∵∠CBE=180-∠ABC,BO平分∠DBC

    ∴∠CBO=∠DBC/2=(180-∠ABC)/2=90-∠ABC/2

    ∵∠ECB=180-∠ACB,CO平分∠ECB

    ∴∠BCO=∠ECB/2=(180-∠ACB)/2=90-∠ABC/2

    ∴∠BOC=180-(∠CBO+∠BCO)

    =180-(90-∠ABC/2+90-∠ACB/2)

    =∠ABC/2+∠ACB/2

    =(∠ABC+∠ACB)/2

    =(180-∠A)/2

    =90-∠A/2

    ∴1)

    ∠A=64,∠BOC=90-64/2=58

    2)

    ∠A=X,∠BOC=90-X/2