设a=√x,b=√y
(x*√x+x*√y)/(xy-y²)-(x+√xy+y)/(x*√x-y*√y)
=(a^3+a^2*b)/(a^2*b^2-b^4)-(a^2+ab+b^2)/(a^3-b^3)
=a^2*(a+b)/(b^2(a-b)(a+b)) - (a^2+ab+b^2)/((a-b)(a^2+ab+b^2))
=a^2/(b^2*(a-b)) - (1/(a-b))
=(1/(b^2*(a-b)))*(a^2-b^2)
=(1/(b^2*(a-b)))*(a+b)(a-b)
=(a+b)/b^2
=(√x+√y)/y