原式=(1-1/2)*(1+1/2)*(1-1/3)*(1+1/3)…(1+1/n)*(1-1/n)
=(1-1/2)*(1-1/3)…(1-1/n)*(1+1/2)*(1+1/3)…(1+1/n)
=(1/2)*(2/3)*(3/4)…((n-1)/n)*(3/2)*(4/3)…((n+1)/n)
=(n+1)/2n
希望我的回答对您有所帮助!
原式=(1-1/2)*(1+1/2)*(1-1/3)*(1+1/3)…(1+1/n)*(1-1/n)
=(1-1/2)*(1-1/3)…(1-1/n)*(1+1/2)*(1+1/3)…(1+1/n)
=(1/2)*(2/3)*(3/4)…((n-1)/n)*(3/2)*(4/3)…((n+1)/n)
=(n+1)/2n
希望我的回答对您有所帮助!