(1)分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F
∵AD∥BC,AD=BC,
∴四边形ABCD为平行四边形;
∴AB∥CD;
∴ME=NF;
∵S△ABM= 1/2*AB•ME,S△ABN= 1/2AB•NF,
∴S△ABM=S△ABN
(2)分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K;
则∠DHA=∠EKB=90°;
∵AD∥BE,
∴∠DAH=∠EBK;
∵AD=BE,
∴△DAH≌△EBK;
∴DH=EK;(2分)
∵CD∥AB∥EF,
∴S△ABM= 12AB•DH,S△ABG= 12AB•EK,
∴S△ABM=S△ABG