(1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长AE等于弧长AC可得∠CDE=∠AOC
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
从而∠PFD=∠OCP,
故△PFD∽△PCO,
由割线定理知PC·PD=PA·PB=12,
故
。
(2)若圆F与圆O内切,设圆F的半径为r,
因为OF=2-r=1,即r=1,
所以OB是圆F的直径,且过P点圆F的切线为PT
则PT 2=PB·PO=2×4=8,即
。
(1)连接OC,OD,OE,由同弧对应的圆周角与圆心角之间的关系结合题中条件弧长AE等于弧长AC可得∠CDE=∠AOC
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
从而∠PFD=∠OCP,
故△PFD∽△PCO,
由割线定理知PC·PD=PA·PB=12,
故
。
(2)若圆F与圆O内切,设圆F的半径为r,
因为OF=2-r=1,即r=1,
所以OB是圆F的直径,且过P点圆F的切线为PT
则PT 2=PB·PO=2×4=8,即
。