不影响结果,不妨设P(p,p + a/p)在第一象限,p > 0
B(0,p + a/p)
y = x的斜率为1,PA的斜率为-1,PA的方程:y - (p + a/p) = -(x - p)
令y = x,x - (p + a/p) = p - x
x = y = p + a/(2p)
A(p + a/(2p),p + a/(2p))
三角形ABP的面积 = (1/2)BP*BP上的高
= (1/2)p[p + a/p - p - a/(2p)]
= a/4 = 1/2
a = 2
f'(x) = 1 - a/x²
f'(p) = 1 - a/p²
过点P曲线C的切线:y - (p + a/p) = (1 - a/p²)(x - p)
令x = 0,y = 2a/p,N(0,2a/p)
令y = x,y = x = 2p,M(2p,2p)
三角形OMN的面积 = (1/2)ON*M的横坐标
= (1/2)(2a/p)(2p)
= 2a
= 4