方程化为:
e^ylnx+y²lnx+2=0
两边对x求导:
(y'lnx+y/x)e^(ylnx)+2yy'lnx+y²/x=0
得: y'=-[y²/x+y/xe^(ylnx)]/[lnxe^(ylnx)+2ylnx]
=-[y²+yx^y]/[(x^y+2y)xlnx]
故dy=y'dx=-[y²+yx^y]/[(x^y+2y)xlnx]dx
方程化为:
e^ylnx+y²lnx+2=0
两边对x求导:
(y'lnx+y/x)e^(ylnx)+2yy'lnx+y²/x=0
得: y'=-[y²/x+y/xe^(ylnx)]/[lnxe^(ylnx)+2ylnx]
=-[y²+yx^y]/[(x^y+2y)xlnx]
故dy=y'dx=-[y²+yx^y]/[(x^y+2y)xlnx]dx