(1)证明:如图1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)△PHD的周长不变为定值8.
证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中
∠APB=∠BPH
∠A=∠BQP
BP=BP,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△PBA(ASA).
∴EM=AP=x.
∴在Rt△APE中,(4-BE)2+x2=BE2.
解得,BE=2+
x2
8.
∴CF=BE−EM=2+
x2
8−x.
又∵折叠的性质得出四边形EFGP与四边形BEFC全等,
∴S=
1
2(BE+CF)BC=
1
2(4+
x2
4−x)×4.
即:S=
1
2x2−2x+8.
配方得,S=
1
2(x−2)2+6,
∴当x=2时,S有最小值6.