(1)
设C(x,y),G(x/3,y/3),则M(x/3,0)
由题意,CM=AM
故(2x/3)^2+y^2=1^2+(x/3)^2
即C:x^2/3+y^2=1
(2)
设P(x1,y1),Q(x2,y2)
由点差法:(x1+x2)=-3k(y1+y2)
由|AP|=|AQ|:(x1+x2)=-k(y1+y2+2)
代入得x1+x2=-3k
设L:y=kx+m,与x^2/3+y^2=1联立
①:△>0 3k^2>m^2-1
②:x1+x2=-3k=-2mk/(k^2+1/3)
联立得:
3k^4-2k^2-1