sinθ+cosθ=√2
平方得1+2sinθcosθ=2
sinθcosθ=1/2 ①
sin²θ+cos²θ=1 ②
①/②得
(sinθcosθ)/(sin²θ+cos²θ)=1/2
左边分子分母同时除以cos²θ得tanθ/(tan²θ+1)=1/2
从而得到tanθ=1
tan(θ+π/3)
=[tanθ+tan(π/3)]/[1-tanθtan(π/3)]
=(1+√3)/(1-√3)
=-2-√3
sinθ+cosθ=√2
平方得1+2sinθcosθ=2
sinθcosθ=1/2 ①
sin²θ+cos²θ=1 ②
①/②得
(sinθcosθ)/(sin²θ+cos²θ)=1/2
左边分子分母同时除以cos²θ得tanθ/(tan²θ+1)=1/2
从而得到tanθ=1
tan(θ+π/3)
=[tanθ+tan(π/3)]/[1-tanθtan(π/3)]
=(1+√3)/(1-√3)
=-2-√3