解题思路:已知数列{an}为等差数列设公差为d,根据数列通项公式,可前n项和公式代入an+Sn=An2+Bn+C,可以求出A、B、C,再进行证明;
因为{an}为等差数列,设公差为d,由an+Sn=An2+Bn+C,
得a1+(n-1)d+na1+[1/2]n(n-1)d=an+Sn=An2+Bn+C,…(2分)
即([1/2]d-A)n2+(a1+[d/2]-B)n+(a1-d-C)=0对任意正整数n都成立.…(4分)
所以
1
2d−A=0
a1+
1
2d−B=0
a1−d−C=0,∴A=[1/2]d,B=a1+[1/2]d,C=a1-d,
所以3A-B+C=0.…(10分)
点评:
本题考点: 等差数列的前n项和;等差数列的通项公式.
考点点评: 此题主要考查等比数列的通项公式和前n项和公式,是一道基础题,解题过程中用到了待定系数法;