y=sinxcosx
=(sin2x)/2
ymax=1 ;ymin=-1 ;T=2π/2=π
y=3cos²x+sin2x/2
=3(1+cos2x)/2+sin2x/2
=3cos2x/2+sin2x/2+3/2
=√[(3/2)²+(1/2)²]sin(2x+θ)+3/2
=√10sin(2x+θ)/2+3/2
ymax=(√10+3)/2 ;ymin=(3-√10)/2 ;T=2π/2=π
y=sinxcosx
=(sin2x)/2
ymax=1 ;ymin=-1 ;T=2π/2=π
y=3cos²x+sin2x/2
=3(1+cos2x)/2+sin2x/2
=3cos2x/2+sin2x/2+3/2
=√[(3/2)²+(1/2)²]sin(2x+θ)+3/2
=√10sin(2x+θ)/2+3/2
ymax=(√10+3)/2 ;ymin=(3-√10)/2 ;T=2π/2=π