(2x+1)/(x-3)(x+4)=[A/(x-3)]+[B/(x+4)]
因为 [A/(x-3)]+[B/(x+4)]=A(x+4)/(x-3)(x+4)+B(x-3)/(x-3)(x+4)
=[A(x+4))+B(x-3)]/(x-3)(x+4)
=[(A+B)x+4A-3B]/(x-3)(x+4)
所以 (2x+1)/(x-3)(x+4)=[(A+B)x+4A-3B]/(x-3)(x+4)
即 (2x+1)=[(A+B)x+4A-3B]
所以 A+B=2且4A-3B=1
解这个方程组得
A=1,B=1