解f(x)=(10^x-10^-x)/(10^x+10^-x)
=((10^x)^2-1)/((10^x)^2+1)
令t=10^x t>0
则原函数变为y=(t^2-1)/(t^2+1)
=(t^2+1-2)/(t^2+1)
=1-2/(t^2+1)
由t>0
故t^2>0
即t^2+1>1
即0<1/(t^2+1)<1
即0<2/(t^2+1)<2
即-2<-2/(t^2+1)<0
即-1<1-2/(t^2+1)<1
故-1<y<1
故原函数的值域为(-1,1).
解f(x)=(10^x-10^-x)/(10^x+10^-x)
=((10^x)^2-1)/((10^x)^2+1)
令t=10^x t>0
则原函数变为y=(t^2-1)/(t^2+1)
=(t^2+1-2)/(t^2+1)
=1-2/(t^2+1)
由t>0
故t^2>0
即t^2+1>1
即0<1/(t^2+1)<1
即0<2/(t^2+1)<2
即-2<-2/(t^2+1)<0
即-1<1-2/(t^2+1)<1
故-1<y<1
故原函数的值域为(-1,1).