s维向量组α1,α2...αs线性无关,则向量组β1,β2.,βr的每个向量均可以由向量组α1,α2...αs线性表出,那么向量组α1,α2...αs和向量组β1,β2.,βr等价,故它们的秩相等都为s
线性代数问题,急!s维向量组α1,α2...αs线性无关,且可由向量组β1,β2.,βr线性表出,证明向量组β1,β2.
1个回答
相关问题
-
在线性代数中,有一个定理:如果向量β1,β2,……,βs可由向量组α1,α2,……,αs线性表出,且s>t,那么β1.β
-
线性代数已知n维向量组α1,α2,……αm(m<n)线性无关,则向量组α可由向量组β线性表示是不是n维向量组β1,β2,
-
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则( )
-
向量组β1 β2.βt 可由向量组α1 α2.αs线性表示 且t>s
-
线性代数,向量组证明,用秩.已知n维向量α1,α2,α3线性无关.若β1,β2,β3可由α1,α2,α3线性表示,即(β
-
设向量组α,β,γ线性无关,证明向量组α,α+β,α+β+γ也线性无关
-
向量组证明,用秩已知n维向量α1,α2,α3线性无关.若β1,β2,β3可由α1,α2,α3线性表示,即(β1,β2,β
-
设向量组I=α1,α2,…,αr,可由向量组Ⅱ=β1,β2,…,βs线性表出,下列命题正确的是( )
-
设向量组α1,α2,…,αr线性无关,证明向量组β1=α1+αr,β2=α2+αr,…,βr-1=αr-1+αr,βr=
-
设α1α2β1β2均是3维列向量,且α1α2线性无关,β1β2线性无关,证明存在向量,使其可以用α1α2线性表出,也可由