在极坐标下求偏导数,是可以根据极坐标和直角坐标的关系用链式法则求导的.
推导过程的问题出在dr/dx=1/cosθ ,dr/dy=1/sinθ这两个式子
原因是r和θ都是x,y的函数,即r=r(x,y),θ=θ(x,y)
实际上r(x,y)=√(x²+y²),θ=arctan(y/x)
所以不能把cosθ和sinθ作为常数处理
正确的推导过程是
∵x=rcosθ,y=rsinθ
∴r=√(x²+y²)
则dr/dx=2x/2√(x²+y²) =x/r=rcosθ/r=cosθ
dr/dy=2y/2√(x²+y²) =y/r=rsinθ/r=sinθ
代入(2)得
df/dx=df/dr·(cosθ),df/dy=df/dr·(sinθ)
代入(1)得
df/dr=df/dr·(cos²θ)+df/dr·(sin²θ)=df/d