证明:∵S △BDP:S △ABD=DP:AD,
S △CDP:S △ACD=DP:AD,
∴(S △BDP+S △CDP):(S △ABD+S △ACD)=DP:AD,
∴S △BCP:S △ABC=DP:AD①,
同理S △ABP:S △ABC=PF:CF②,
S △ACP:S △ABC=PE:BE③,
①+②+③,得
(S △BCP+S △ABP+S △ACP):S △ABC=
DP
AD +
PF
CF +
PE
BE ,
即
DP
AD +
PF
CF +
PE
BE =1.
证明:∵S △BDP:S △ABD=DP:AD,
S △CDP:S △ACD=DP:AD,
∴(S △BDP+S △CDP):(S △ABD+S △ACD)=DP:AD,
∴S △BCP:S △ABC=DP:AD①,
同理S △ABP:S △ABC=PF:CF②,
S △ACP:S △ABC=PE:BE③,
①+②+③,得
(S △BCP+S △ABP+S △ACP):S △ABC=
DP
AD +
PF
CF +
PE
BE ,
即
DP
AD +
PF
CF +
PE
BE =1.