有理数a,b满足|ab-2|+|1-b|=0
ab-2=0,1-b=0
解得a=2,b=1
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)…+1/(a+2011)(b+2011)
=1/1*2+1/2*3+1/3*4+...+1/2013*2012
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/2012-1/2013)
=1-1/2013
=2012/2013
有理数a,b满足|ab-2|+|1-b|=0
ab-2=0,1-b=0
解得a=2,b=1
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)…+1/(a+2011)(b+2011)
=1/1*2+1/2*3+1/3*4+...+1/2013*2012
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/2012-1/2013)
=1-1/2013
=2012/2013