关于数学的趣味问题!是关于数学的趣味问题,就是有趣的问题!问题必须要有答案!

3个回答

  • 孙子巧解“鸡兔同笼”

    大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚.求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼”问题的?

    原来孙子提出了大胆的设想.他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”.这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2.由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1.所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只).

    当然,这道题还可以用方程来解答.我们可以先设兔的只数(也就是头数)是x,因为“鸡头+兔头=35”,所以“鸡头=35-x”.由此可知,有x只兔,应该有4x只兔脚,而鸡的只数是(35-x),所以应该有2×(35-x)只鸡脚.现在已知鸡兔的脚总共是94只,因此,我们可以列出下面的关系式:

    4x+2×(35-x)=94

    x=12

    于是可以算出鸡的只数是35-12=23.

    还有一道这样的题:“100个和尚吃100个馒头.大和尚一人吃3个,小和尚3人吃一个.求大、小和尚各多少个?”它的答案是大和尚有25个,小和尚有75个.算法一样的