(2/3)*f'(0)
高数(二重积分的应用)急!设f(u)为可微函数,且f(0)=0,求lim┬(t→0^+ )〖(∬
1个回答
相关问题
-
设f(u)在u=0的领域内连续,且lim(n趋向于0)f(u)/u=A,求lim(x趋向于0)d/dx∫【0,1】f(t
-
设函数f(x)可微且满足关系式:{积分符号从0到x }[2f(t)-1]=f(x)-1,求f(x)
-
高数,定积分,设∫上限x下限0 f '(ln t)dt=ln(1+x),且f(0)=0,求f(x)
-
设f(x)连续且f(0)=0,f'(0)=1 计算lim(x->0)=∫(t*f(x^2-t^2)dt)\x^4 积分的
-
设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =
-
设f(t)是二次可微函数且f''(t)不等于0 x=f'(t),y=tf'(t)-f(t),求dy/dx,d^2y/dx
-
证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0
-
设函数f(x)在点0可导,且f(0)=0,则lim(x→0)[f(x)/x]=
-
设f可微,f(0)=0,求lim f(x^n)/(x^n) (其中x趋于无穷大,n为正整数)
-
设f''(x)连续,且f''(x)>0,f(0)=f'(0)=0,试求极限lim(x->0+)∫(上u(x) 下0)f(