解设Q(m,0),M(0,2)
以QM为直径和一圆的方程可用直径式得:
(x-0)(x-m)+y(y-2)=0
把以下两等式联立解
:x^2+y^2-mx-2y=0 ①
x^2+y^2-4y+3=0 ②
得mx-2y+3=0
所以AB恒过一定点(0,3/2)
设P(m,n),则直线MP为:(y-2)/x=(n-2)/m
所以直线MP与X轴的交点Q为:(-2m/(n-2),0)
因为MA^2=MP·MQ,所以MP·MQ=1
所以[m^2+(n-2)^2][4m^2/(n-2)^2+4]=1
即m^2+(n-9/4)^2=1/16
也就是:x^2+(y-9/4)^2=1/16