(1)a1=1,sn=3an+1
a1=s1=3a1+1 2a1=-1 a1=-2≠1
∴数列是分段数列
s(n-1)=3a(n-1)+1
an=sn-s(n-1)=(3an+1)-[3a(n-1)+1]=3an-3a(n-1)
2an=3a(n-1)
an=3/2a(n-1)
数列是以1为首项,3/2为公比的等比数列
通项公式为:
an=1 (n=1)
an=(3/2)^(n-1) (n>1)
(2)a2+a4+a6+…+a2n
通项公式为:An=(3/2)^(2n-1)
首项为3/2,公比为(3/2)²
则a2+a4+a6+…+a2n={(3/2)[1-(3/2)^2n]}/[1-(3/2)²]
={(3/2)[1-(3/2)^2n]}/(-5/4)
=(6/5)[(3/2)^2n-1]