这个x>0时有f(x)-f(0)=f'(m)m,其中m在(0,x)上,由已知f(0)=0故有f(x)>0
微积分 用拉格朗日定理证明若x→0+limf(x)=f(0)=0,且当x>0时,f'(x)>0,则x>0时,f(x)>0
2个回答
相关问题
-
用拉格朗日定理证明:若[lim x->0+ f(x)]=f(0)=0,且当x>0时f'(x)>0,则当x>0时,f(x)
-
大一微积分 中值定理及导数应用 用拉格朗日定理证明:,且当x>0时,f’(x)>0,则当x>0时,f(
-
微积分 当x≥0时.对f(x)在【0,b】上应用拉格朗日中值定理,有f(b)-f(0)=f’(ξ)b ξ∈(0,b)
-
当x趋向于0时,limf(x)/x=1,且f‘’(x)>0,证明:f(x)>=x
-
若f(x)可导,f(0)=0.证明x趋近于0时limf(x)/x=f'(0)
-
若f(0)=0,且f'(0)存在求limf(x)/x在x趋向0时
-
设x趋于无穷大时,limf'(x)=k,常数a>0,用拉格朗日中值定理求x趋于无穷大时,lim[f(x+a)-f(x)]
-
设f(x)定义在[0,c],f'(x)存在且单调减少、f(0)=0用拉格朗日中值定理证明对于0≤a<b≤a+b<c恒有f
-
若f‘(0)存在且f(0)=0,则limf(x)/x x趋近0等于多少
-
f(x)在点x=0的某一领域内有连续的二阶导数,且x→0时 limf(x)/x=0,证明f(x)=0,f'(x)=0