∵tanA=
1
3 ,
∴cos 2A=
1
tan 2 A+1 =
9
10 ,又A∈(0,30°),
∴sinA=
10
10 ,又sinC=sin150°=
1
2 ,BC=1,
根据正弦定理得:
AB
sinC =
BC
sinA ,
则AB=
BCsinC
sinA =
1
2
10
10 =
10
2 .
故答案为:
10
2
∵tanA=
1
3 ,
∴cos 2A=
1
tan 2 A+1 =
9
10 ,又A∈(0,30°),
∴sinA=
10
10 ,又sinC=sin150°=
1
2 ,BC=1,
根据正弦定理得:
AB
sinC =
BC
sinA ,
则AB=
BCsinC
sinA =
1
2
10
10 =
10
2 .
故答案为:
10
2