(1)将A(1,0),B(-4,0)代入y=-x2+bx+c中得
?1+b+c=0
?16?4b+c=0,
解得
b=?3
c=4.
所以抛物线解析式为:y=-x2-3x+4;
(2)在该抛物线位于第二象限的部分上是否存在点D,使得△DBC的面积S最大.理由如下:
设D点坐标为(x,-x2-3x+4)(-4<x<0).如图,过D点作DE⊥x轴于点E.
∵S△DBC=S四边形BDCO-S△BOC=S四边形BDCO-[1/2]×4×4=S四边形BDCO-8,
若S四边形BDCO有最大值,则S△DBC就最大,
∴S四边形BDCO=S△BDE+S直角梯形DEOC
=[1/2]BE?DE+[1/2]OE(DE+OC)
=[1/2](x+4)(-x2-3x+4)+[1/2](-x)(-x2-3x+4+4)
=-2x2-8x+8
=-2(x+2)2+16,
当x=-2时,S四边形BDCO最大值=16.
∴S△BDC最大值=16-8=8.
当x=-2时,-x2-3x+4=-(-2)2-3×(-2)+4=6,
∴点D坐标为(-2,6);
(3)能够在直线BC上找到一个点M,在抛物线上找到一个点N,使得C、F、M、N四点组成的四边形为平行四边形.理由如下:
∵y=-x2-3x+4=-(x+[3/2])2+[25/4],
∴顶点F的坐标为(-[3/2],[25/4]).
∵B(-4,0),C(0,4),
∴直线BC的解析式为y=x+4.
分两种情况:①CF是边.
如图,过点F作FN∥BC,交抛物线于点N,设直线FN的解析式为y=x+m,
把F(-[3/2],