计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是

1个回答

  • 计算曲线积分:

    ∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

    其中L是在抛物线2x = πy^2上由点(0,0)到(π/2,1)的一段弧.

    ——————————————————————————————————————————

    补线:

    L1:x = π/2、逆时针方向、dx = 0、由y = 0变化到y = 1

    L2:y = 0、逆时针方向、dy = 0、由x = 0变化到x = π/2

    由于L是顺时针方向,现在设L⁻是L的逆时针方向

    ∮(L⁻+L1+L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

    = ∫∫D [∂/∂x (1 - 2ysinx + 3x^2y^2) - ∂/∂y (2xy^3 - y^2cosx)] dxdy、用Green公式

    = ∫∫D [(- 2ycosx + 6xy^2) - (6xy^2 - 2ycosx)] dxdy

    = ∫∫D (- 2ycosx + 6xy^2 - 6xy^2 + 2ycosx) dxdy

    = 0

    而∫(L1) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

    = ∫(0→1) [0 + 1 - 2y + 3(π/2)^2y^2] dy

    = ∫(0→1) [1 - 2y + (3/4)π^2 * y^2] dy

    = y - y^2 + (3/4)π^2 * (1/3)y^3:(0→1)

    = 1 - 1 + (3/4)π^2 * 1/3

    = (1/4)π^2

    而∫(L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

    = ∫(L2) 0 dx

    = 0

    于是∫(L⁻) + ∫(L1) + ∫(L2) = ∮(L⁻+L1+L2)

    ∫(L⁻) + (1/4)π^2 + 0 = 0

    ∫(L⁻) = - (1/4)π^2

    ∫(L) = (1/4)π^2

    即原式∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy = (1/4)π^2