(1)∵P是点P是反比例函数 y=k1x(k1>0,x>0)图象上一动点,∴S矩形PBOA=k1,
∵E、F分别是反比例函数 y=k2x(k2<0且|k2|<k1,)的图象上两点,
∴S△OBF=S△AOE= 12|k2|,
∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|,
∵k2<0,
∴四边形PEOF的面积S1=S矩形PBOA+S△OBF+S△AOE=k1+|k2|=k1-k2.
(2)①∵PE⊥x轴,PF⊥y轴可知,P、E两点的横坐标相同,P、F两点的纵坐标相同,
∴E、F两点的坐标分别为E(2,k22),F( k23,3);
②∵P(2,3)在函数y= k1x的图象上,
∴k1=6,
∵E、F两点的坐标分别为E(2,k22),F( k23,3);
∴PE=3- k22,PF=2- k23,
∴S△PEF= 12(3- k22)(2- k23)= (6-k2)212,
∴S△OEF=(k1-k2)- (6-k2)212
=(6-k2)- (6-k2)212
= 36-k2212= 83,
∵k2<0,
∴k2=-2.
∴反比例函数 y=k2x的解析式为y=- 2x.