1.∵∠BAC=30°,AB=AC,∴∠ABC=∠ACB=75°
∠ABC是△ABD外角,∴∠D+∠DAB=75°.
∠CAE+∠DAB=∠DAE-∠BAC=75°.∴∠D=∠CAE.
∠ABD=180°-∠ABC,∠ACE=180°-∠ACB.∴∠ABD=∠ACE
△ABD∽△ACE.BD/AB=AC/CE,X/1=1/Y.
所以Y=1/X,
2.当∠D+∠DAB=∠CAE+∠DAB=∠DAE-∠BAC
即∠ABC=∠DAE-∠BAC时
∵∠ABC=(180°-∠BAC)/2=90°-1/2∠BAC,∴当∠DAE-∠BAC=90°-1/2∠BAC
即∠DAE=90°+1/2∠BAC,M=90+N/2,Y与X的函数关系仍然成立