y=xe^y
y'=e^y+xe^y*y'
所以:
y'=e^y/(1-xe^y)
y''=[e^y*y'(1-xe^y)-e^y(-e^y-xe^y*y')/(1-xe^y)^2
=e^y(e^y-y')/(1-xe^y)^2
=-xe^3y/(1-xe^y)^2.
y=xe^y
y'=e^y+xe^y*y'
所以:
y'=e^y/(1-xe^y)
y''=[e^y*y'(1-xe^y)-e^y(-e^y-xe^y*y')/(1-xe^y)^2
=e^y(e^y-y')/(1-xe^y)^2
=-xe^3y/(1-xe^y)^2.