高等数学求微分方程的通解

1个回答

  • y'+x=√(x^2+y)

    设y=x^2u

    dy=2xudx+x^2du

    2xudx+x^2du+xdx=x√(1+u)dx

    2udx+xdu+dx=√(1+u)dx

    xdu=[√(1+u)-2u-1]dx

    du/[√(1+u)-2u-1] =dx/x

    ln|x|=∫du/[√(1+u)-2u-1]

    =∫2√(u+1)d√(u+1)/[√(1+u)-2√(1+u)^2+1]

    =∫-2√(u+1)d√(u+1)[/(2√(1+u)+1)(√(1+u)-1)]

    =(-2/3)∫d√(u+1)/(2√(1+u)+1) -(2/3)d√(1+u)/(∫√(1+u)-1

    =(-1/3)ln|2√(1+u)+1| -(2/3)ln|√(1+u)-1| +C

    通解

    ln|x|=(-1/3)ln|2√(1+y/x^2) +1| -(2/3)ln|√(1+y/x^2) -1| +C