f(π/6)=√3/4sinψ+3/4cosψ-1/2cosψ
=√3/4sinψ+1/4cosψ
=1/2(√3/2sinψ+1/2cosψ)
=1/2sin(ψ+π/6)
=1/2
sin(ψ+π/6)=1
ψ+π/6=2kπ+π/2
ψ=2kπ+π/3,k∈Z
f(π/6)=√3/4sinψ+3/4cosψ-1/2cosψ
=√3/4sinψ+1/4cosψ
=1/2(√3/2sinψ+1/2cosψ)
=1/2sin(ψ+π/6)
=1/2
sin(ψ+π/6)=1
ψ+π/6=2kπ+π/2
ψ=2kπ+π/3,k∈Z