同学,题目没错,换一种思维方式来思考.
根据其问题,设F(x)=xf(x),比较它们的大小,采用函数单调性求解.[xf(x)]'=f(x)+xf(x)',根据题目意思,得知:f(x)>=0,xf '(x)-f(x)>0得xf '(x)>0,因此[xf(x)]'>0,即F(x)在其定义域为增函数,因为a<b,所以af(x)
同学,题目没错,换一种思维方式来思考.
根据其问题,设F(x)=xf(x),比较它们的大小,采用函数单调性求解.[xf(x)]'=f(x)+xf(x)',根据题目意思,得知:f(x)>=0,xf '(x)-f(x)>0得xf '(x)>0,因此[xf(x)]'>0,即F(x)在其定义域为增函数,因为a<b,所以af(x)