设A(x1,y1) B(x2,y2)
以直线AB为直径圆恰好过椭圆右焦点F(c,0)
则AF⊥BF
向量AF=(c-x1,-y1) BF=(c-x2,-y2)
AF*BF=0
(c-x1)(c-x2)+y1y2=0 (*)
联立直线与椭圆:x^2/a^2+3x^2/b^2=1
x1+x2=0 x1*x2=-a^2b^2/(3a^2+b^2)
y1y2=(-√3x1)(-√3x2)=3x1x2
b^2+c^2=a^2
代入(*)
4a^4-8a^2c^2+c^4=0
除以c^4
e^4-8e^2+4=0
e^2=4-2√3 (另一根舍去)
e=√3-1